1 Assignment 2 [20]

Instructions:

Please answer the questions carefully, and clearly write your student number and name.

When uploading your assignment, upload the document as a pdf.

When saving your document, please save the file with your students number then name (such as ”201912345-JohnPaul.pdf”).

Note that the deadline to submit the assignment is 08:00 on Friday 29 May 2020.

Question 1 [4]

Use Lagrange multipliers to find the point (a,b) on the graph of y = e6x, where the value of ab is as small as possible.

Question 2 [4]

Let f(x,y) = x2ex2 and let R be the triangle bounded by the lines x = 4, x = y/2, and y = x in the xy-plane. Express RR f dA as a double integral in two different ways (dxdy and dy dx), then evaluate one of your integrals to find the value of RR f dA.

Question 3 [2]

Convert the integral

to polar coordinates.

Question 4 [4]

Find the volume of the solid in R3 bounded by y = x2, x = y2, z = x + y + 24 and z = 0.

(Show calculations)

Question 5 [3]

Set up the integral RRRW f(x,y,z)dV for the function f(x,y,z) = z and region x2 + y2 = z = 49 in cylindrical coordinates.

Question 6 [3]

Convert the integral

to spherical coordinates.

1

Instructions:

Please answer the questions carefully, and clearly write your student number and name.

When uploading your assignment, upload the document as a pdf.

When saving your document, please save the file with your students number then name (such as ”201912345-JohnPaul.pdf”).

Note that the deadline to submit the assignment is 08:00 on Friday 29 May 2020.

Question 1 [4]

Use Lagrange multipliers to find the point (a,b) on the graph of y = e6x, where the value of ab is as small as possible.

Question 2 [4]

Let f(x,y) = x2ex2 and let R be the triangle bounded by the lines x = 4, x = y/2, and y = x in the xy-plane. Express RR f dA as a double integral in two different ways (dxdy and dy dx), then evaluate one of your integrals to find the value of RR f dA.

Question 3 [2]

Convert the integral

to polar coordinates.

Question 4 [4]

Find the volume of the solid in R3 bounded by y = x2, x = y2, z = x + y + 24 and z = 0.

(Show calculations)

Question 5 [3]

Set up the integral RRRW f(x,y,z)dV for the function f(x,y,z) = z and region x2 + y2 = z = 49 in cylindrical coordinates.

Question 6 [3]

Convert the integral

to spherical coordinates.

1

HELP ME PLEASE.Required:1. Journalize the transactions2. Set up T accounts and post beginning account balances and transactions given above, adding T accounts necessary3. Journalize and post-closing entries4....ECONOMICS AND QUANTITATIVE ANALYSIS (ONLINE)CALCULATIONS & SHORT WRITTEN RESPONSESINSTRUCTIONSUndertake the necessary calculations and prepare short written responses for the following four questions....Income tax lawAssessment 2 InformationSubject Code: MBA642Subject Name: Project Initiation, Planning and ExecutionAssessment Title:Assessment Type:Length: Project Management Software ComparisonIndividual, Video Recording10...MST Student Assignment for fall 2020Collect Accident Reports from the identified States considering the following factors:Nature of the AccidentsThe degree of fatalityCost to the State with respect to...Word limit: 1200Assignment 4 - the Individual Reflective Journal - is to ensure student is able to contribute to document a critical reflection of their personal learning process, as experienced during...Report on Research Design and MethodologyWords limit: 2500 wordsAssignment 3 - the Research Design and Methodology - is to ensure each student is able to contribute to the construction of a written report...**Show All Questions**