Assignment 2 (30 Marks)

Problem 1 (7.5 Marks)

The diagram in Figure 1 shows three masses on a rotor at

• M1 kg @ 45° at a 60-mm radius

• M2 kg @ 115° at a 60-mm radius

• M3 kg @ 315° at a 60-mm radius

Determine the mass and its’ angle to be added on the rotor in the plane R at a 70mm radius to balance the rotor, considering both static and dynamic balancing.

Determine the mass and its’ angle to be added on the rotor in the plane L at a 100mm radius to balance the rotor, considering both static and dynamic balancing.

Demonstrate the solution using both,

(i) the graphical technique; and

(ii) the analytic technique

NOTE: Each student has their own values for L1, L2, L3, R1, R2, R3 M1, M2 and M3 which are given in Assignment 2 Appendix in CloudDeakin

Figure 1

Problem 2 (7.5

For the planetary gear train shown in Figure 2, the arm H1 is connected to gear 2 and rotates around the input axis. Gear 1 and 3 are fixed to the input axle plane. Gears 1 and 4, 3 and 6, are fixed together respectively.

Determine the speed and direction of the output arm H2 if the input speed of H1 is ? rpm CCW.

N6

NOTE: Each student has their own values for ?, N1, N2, N5 and that are in Assignment 2 Appendix in CloudDeakin

Input

Output

Figure 2

Problem 3 (7.5

Two pulleys, one D1 mm diameter and the other D2 mm diameter, are on parallel shafts L m apart as shown in Fig 3

Determine:

a) the length of the belt required and the angle of contact between the belt and each pulley; and

b) what power can be transmitted to N2 by the belt when the larger pulley N1 rotates at 1000 r.p.m., if the maximum permissible tension in the belt is 3 kN, and the coefficient of friction between the belt and the pulley is 0.30?

NOTE: Each student has their own values for D1, D2, and L that are in Assignment 2 Appendix in CloudDeakin

Figure 3

Problem 4 (7.5

A flywheel system (overrunning clutch) is depicted in the Fig. 4.

Two coaxial shafts (A and B) are connected by a single-plate clutch of internal radius 45 mm and external radius 135 mm, with both sides of the plate being used. The coefficient of friction is assumed as 0.3. Assume the pressure is (a) uniform, and (b) inversely proportional to radius.

Determine what the required spring force is to enable the maximum power transmission of 5.5 kW at an angular speed of 900 revs/min?

Figure 4

Problem 1 (7.5 Marks)

The diagram in Figure 1 shows three masses on a rotor at

• M1 kg @ 45° at a 60-mm radius

• M2 kg @ 115° at a 60-mm radius

• M3 kg @ 315° at a 60-mm radius

Determine the mass and its’ angle to be added on the rotor in the plane R at a 70mm radius to balance the rotor, considering both static and dynamic balancing.

Determine the mass and its’ angle to be added on the rotor in the plane L at a 100mm radius to balance the rotor, considering both static and dynamic balancing.

Demonstrate the solution using both,

(i) the graphical technique; and

(ii) the analytic technique

NOTE: Each student has their own values for L1, L2, L3, R1, R2, R3 M1, M2 and M3 which are given in Assignment 2 Appendix in CloudDeakin

Figure 1

Problem 2 (7.5

For the planetary gear train shown in Figure 2, the arm H1 is connected to gear 2 and rotates around the input axis. Gear 1 and 3 are fixed to the input axle plane. Gears 1 and 4, 3 and 6, are fixed together respectively.

Determine the speed and direction of the output arm H2 if the input speed of H1 is ? rpm CCW.

N6

NOTE: Each student has their own values for ?, N1, N2, N5 and that are in Assignment 2 Appendix in CloudDeakin

Input

Output

Figure 2

Problem 3 (7.5

Two pulleys, one D1 mm diameter and the other D2 mm diameter, are on parallel shafts L m apart as shown in Fig 3

Determine:

a) the length of the belt required and the angle of contact between the belt and each pulley; and

b) what power can be transmitted to N2 by the belt when the larger pulley N1 rotates at 1000 r.p.m., if the maximum permissible tension in the belt is 3 kN, and the coefficient of friction between the belt and the pulley is 0.30?

NOTE: Each student has their own values for D1, D2, and L that are in Assignment 2 Appendix in CloudDeakin

Figure 3

Problem 4 (7.5

A flywheel system (overrunning clutch) is depicted in the Fig. 4.

Two coaxial shafts (A and B) are connected by a single-plate clutch of internal radius 45 mm and external radius 135 mm, with both sides of the plate being used. The coefficient of friction is assumed as 0.3. Assume the pressure is (a) uniform, and (b) inversely proportional to radius.

Determine what the required spring force is to enable the maximum power transmission of 5.5 kW at an angular speed of 900 revs/min?

Figure 4

supply chain management in Singapore Research questions 1. Singapore has about 15% delivery failure rate, what can be done to lower this number thereby satisfying customers and protecting the business...Monitor administrative systemSubmission detailsCandidate’s name Phone no.Assessor’s name Phone no.Assessment siteAssessment date/s Time/sThe assessment task is due on the date specified by your assessor....Plan and implement administrative systemSubmission detailsCandidate’s name Phone no.Assessor’s name Phone no.Assessment siteAssessment date/s Time/sThe assessment task is due on the date specified by your...AssignmentAssessment Tasks and InstructionsStudent Name Putu Nenny WidhianiStudent Number S2138Course and CodeUnit(s) of Competency and Code(s) SITHKOP002 Plan and cost basic menusStream/ClusterTrainer/AssessorAssessment...Assessment Event Cover SheetThis Cover Sheet must be completed and returned with your assessment event.Please submit your assessment and completed cover sheet via the Google Classroom ‘Turn in’ function.Course...Clinical Project Assessment 2Assessment 2 (70%):1. Clinical Project Contract Learning Submission 10% for (500 words)– Due Week 3 2. Clinical Project Assignment 60% – (3000 words) - Due Week 8Introduction:...**Show All Questions**