NEM3101 Engineering Analysis and Modelling Dr M.Sek

Week 4 tasks

NAME:

Numerical integration and differentiation. Power demand on an automotive engine.

Notes on numerical integration and differentiation can be found by following the links at: http://staff.vu.edu.au/msek http://staff.vu.edu.au/msek/Numerical%20integration/numIntegrationPublished.html http://staff.vu.edu.au/msek/Numerical%20differentiation/numDiffPublished.html

You work for a Formula 1 team. You happen to obtain a record of velocity versus elapsed time during a lap test for the car of your competitor. No other information is available due to commercial-inconfidence restrictions.

The knowledge about the power of the competitor's car engine would allow your team to fine-tune the power characteristics of your car engine to exceed that of the competitor's.

You are given a task of estimating the power characteristics of their engine.

On the website, under the heading Sample data files: Car speed vs time data, there is a a twocolumn text file, containing a record of speed of an accelerating vehicle (in km/h), starting from a stationary position. Values in the first column are the elapsed time from the start (in seconds) and the corresponding values of velocity (km/h) are in the second column. To save the file right-click on the link and select 'Save target as'.

1 Make appropriate analysis of how to determine the power that the vehicle power drive must supply at each point of time to produce that velocity profile. First, neglect aerodynamic drag, rolling resistance and other friction losses If you need to assume some values, do so.

2 At each point of time determine the distance from the start that the vehicle has travelled. This requires numerical integration, such as trapezoidal integration.

3 Determine the acceleration the vehicle is subjected to at each point of time. This requires numerical differentiation. Finite difference formulae can be found at: http://www.staff.vu.edu.au/msek/Finite%20difference%20formulae.pdf

4 Calculate the power demand at each point of time.

5 Now consider the rolling resistance and aerodynamic drag with a rolling friction coefficient and aerodynamic drag coefficient typical to vehicles. What is the drive power at each point of time now? Make assumptions and select values from a realistic range as required.

http://en.wikipedia.org/wiki/Rolling_resistance http://en.wikipedia.org/wiki/Drag_coefficient

Submit your progress work at the end of the Lab session and the completed work before the start of your next Lab session in Week 5

Make hard copies of plots showing the results and bring them to the Lab in Week 5.

Relationship between the position, velocity and acceleration

Position x

dx

v ? ? x?

dt

dv d 2x

a ? ? 2 ? ?x??dt dt

Position x dx ? v dt

x2 t 2

? dx ? ? v dt

x1 t1

Distance travelled

t 2

x2 ? x1 ? ? v dt Area under v

t1

New position

t 2

x2 ? x1 ? ? v dt

t1 ? f(t)

Week 4 tasks

NAME:

Numerical integration and differentiation. Power demand on an automotive engine.

Notes on numerical integration and differentiation can be found by following the links at: http://staff.vu.edu.au/msek http://staff.vu.edu.au/msek/Numerical%20integration/numIntegrationPublished.html http://staff.vu.edu.au/msek/Numerical%20differentiation/numDiffPublished.html

You work for a Formula 1 team. You happen to obtain a record of velocity versus elapsed time during a lap test for the car of your competitor. No other information is available due to commercial-inconfidence restrictions.

The knowledge about the power of the competitor's car engine would allow your team to fine-tune the power characteristics of your car engine to exceed that of the competitor's.

You are given a task of estimating the power characteristics of their engine.

On the website, under the heading Sample data files: Car speed vs time data, there is a a twocolumn text file, containing a record of speed of an accelerating vehicle (in km/h), starting from a stationary position. Values in the first column are the elapsed time from the start (in seconds) and the corresponding values of velocity (km/h) are in the second column. To save the file right-click on the link and select 'Save target as'.

1 Make appropriate analysis of how to determine the power that the vehicle power drive must supply at each point of time to produce that velocity profile. First, neglect aerodynamic drag, rolling resistance and other friction losses If you need to assume some values, do so.

2 At each point of time determine the distance from the start that the vehicle has travelled. This requires numerical integration, such as trapezoidal integration.

3 Determine the acceleration the vehicle is subjected to at each point of time. This requires numerical differentiation. Finite difference formulae can be found at: http://www.staff.vu.edu.au/msek/Finite%20difference%20formulae.pdf

4 Calculate the power demand at each point of time.

5 Now consider the rolling resistance and aerodynamic drag with a rolling friction coefficient and aerodynamic drag coefficient typical to vehicles. What is the drive power at each point of time now? Make assumptions and select values from a realistic range as required.

http://en.wikipedia.org/wiki/Rolling_resistance http://en.wikipedia.org/wiki/Drag_coefficient

Submit your progress work at the end of the Lab session and the completed work before the start of your next Lab session in Week 5

Make hard copies of plots showing the results and bring them to the Lab in Week 5.

Relationship between the position, velocity and acceleration

Position x

dx

v ? ? x?

dt

dv d 2x

a ? ? 2 ? ?x??dt dt

Position x dx ? v dt

x2 t 2

? dx ? ? v dt

x1 t1

Distance travelled

t 2

x2 ? x1 ? ? v dt Area under v

t1

New position

t 2

x2 ? x1 ? ? v dt

t1 ? f(t)

Assessment Tasks and InstructionsStudent NameStudent NumberCourse and CodeUnit(s) of Competency and Code(s) SITXGLC001 Research and comply with regulatory requirementsStream/ClusterTrainer/AssessorAssessment...Journal Article CritiqueRe-submit AssignmentDue Jun 7 by 23:59 Points 20 Submitting a file upload File Types pdfAvailable Mar 4 at 9:00 - Jun 30 at 23:59 4 months60117 Understanding Data and Statistical...ASSESSMENT BRIEFSubject Code and Title PUBH6006: Community Health and Disease PreventionAssessment Assessment 1: Essay - Working with CommunitiesIndividual/Group IndividualLength 2,000 wordsLearning Outcomes...I'm college student and I have to submit my research paper on or before 30th June 2019. The research paper topic is Virtual Reality in Psychotherapy. It should be plagiarism free and unique. Atleast...2 Feedback forms from two different people. For eg. One can be from Manager and other one from a team leader. 1. Describe (8-10 lines or 80 to 100 words) how you can serve as a positive role model in your...CST3003 AssignmentDue date: 16 June 2019Weighting: 20%ReportOur organisation, after implementing mobile services the process of moving to the final cloud solution has discovered that a lot of the expected...MARK3085 Google Analytics AssessmentContext:You’re a Web Analytics consultant and hired by the owner of the Google Merchandise Store to provide recommendations for some strategic decision making to improve...**Show All Questions**