PHYS225/PHY8225 – Assignment 3, 2019

Set on Thu 26th September, due on Mon 14th October.

MATLAB

For a full mark, the student is asked to answer 4 questions correctly and for each of them, he/she must:

- To submit BY EMAIL all .m files collected into ONE SINGLE .ZIP file to jeremyd@uow.edu.au.

- Each .m file must run on MATLAB without errors or warnings.

- To complete the question on all its parts (derivation, calculations and MATLAB code);

- Derivation and calculations must be submitted along with the plot or plots showing the output of the MATLAB code to EIS with a coversheet.

- To summarise: o Material to be submitted through EIS FOR EACH QUESTION is:

? The code typed

? The plots produced by the code

? The derivation or calculations required to write the code or to answer to the questions.

Question 1

Using MATLAB/OCTAVE, plot the vector field

??? = ??2??^ - ????^ ???? ??h?? ???????????? - 2 ?? +2 ?????? - 2 ?? +2

Find the magnitude of the vector field at the point (??0, ??0) = (3,2).

Question 2

Derive the magnetic field B inside and outside of an infinite thick wire with radius a=1. The wire carries a uniformly distributed current I=1A in the direction outwards the page.

Plot the magnetic flux density in the region -2 x +2 and -2 y +2 that is internal to the wire and external to the wire. The expected result should look like Fig.1

Fig.1

Question 3

Using MATLAB/OCTAVE and the Method of Moments (MoM), find the charge distribution on a cylindrical conductor whose radius is a=0.01m and length L=1m. The potential on the wire is V=1V. You may assume that the charge is distributed uniformly within each section. Assume that the number of the sections is N=5 and the step size is ?L=0.2m.

Question 4

For the indicated boundary conditions that are specified in the figure, derive analytically the electric potential distribution V(x,y) within the enclosed region by solving Laplace’s equation (Hint: by separation of variables). Plot the potential distribution using FDM with:

- a=1 m

- V0=25 V

y

a

V=0

V0

Compare and comment the results obtained using the analytical solution and the FD method.

Set on Thu 26th September, due on Mon 14th October.

MATLAB

For a full mark, the student is asked to answer 4 questions correctly and for each of them, he/she must:

- To submit BY EMAIL all .m files collected into ONE SINGLE .ZIP file to jeremyd@uow.edu.au.

- Each .m file must run on MATLAB without errors or warnings.

- To complete the question on all its parts (derivation, calculations and MATLAB code);

- Derivation and calculations must be submitted along with the plot or plots showing the output of the MATLAB code to EIS with a coversheet.

- To summarise: o Material to be submitted through EIS FOR EACH QUESTION is:

? The code typed

? The plots produced by the code

? The derivation or calculations required to write the code or to answer to the questions.

Question 1

Using MATLAB/OCTAVE, plot the vector field

??? = ??2??^ - ????^ ???? ??h?? ???????????? - 2 ?? +2 ?????? - 2 ?? +2

Find the magnitude of the vector field at the point (??0, ??0) = (3,2).

Question 2

Derive the magnetic field B inside and outside of an infinite thick wire with radius a=1. The wire carries a uniformly distributed current I=1A in the direction outwards the page.

Plot the magnetic flux density in the region -2 x +2 and -2 y +2 that is internal to the wire and external to the wire. The expected result should look like Fig.1

Fig.1

Question 3

Using MATLAB/OCTAVE and the Method of Moments (MoM), find the charge distribution on a cylindrical conductor whose radius is a=0.01m and length L=1m. The potential on the wire is V=1V. You may assume that the charge is distributed uniformly within each section. Assume that the number of the sections is N=5 and the step size is ?L=0.2m.

Question 4

For the indicated boundary conditions that are specified in the figure, derive analytically the electric potential distribution V(x,y) within the enclosed region by solving Laplace’s equation (Hint: by separation of variables). Plot the potential distribution using FDM with:

- a=1 m

- V0=25 V

y

a

V=0

V0

Compare and comment the results obtained using the analytical solution and the FD method.

Assessment Task 3: Implement an employee relations strategyFor this assessment task, you will demonstrate the skills and knowledge required to develop a grievance policy and procedure and implement strategies...Assessment Task 2: Implement an employee relations strategyFor this assessment task, you will demonstrate the skills and knowledge required to implement employee relations options and identify and arrange...Assessment Task 1: Develop an employee relations strategyFor this assessment task, you will demonstrate the skills and knowledge necessary for developing an employee relations strategy. The outcome of...its individual assignmentAssessment Criteria SheetsBUMKT5902 Marketing Managementaspects such as:•••Overview of the Assignment • Part A - ReportReport length:used.Report StructureUse the following structure...BriefYou have been asked to create a proposal to the New Zealand Tourism Board, who would like new hospitality products to be introduced in New Zealand and overseas to allow the New Zealand hospitality...HOLMES INSTITUTEFACULTY OFHIGHER EDUCATIONAssessment Details and Submission GuidelinesTrimester T1 2020Unit Code HI5020Unit Title Corporate AccountingAssessment Type Individual AssignmentAssessment Title...Managing Organisations (MNG10247)Online Exam Assessment: GuidelinesTitle: Online Exam AssessmentMarks: 40 (which is 40% of the unit grade) Word Count: 2000 wordsDue: Prior to 9:00 am Monday, June 08, 2020Task:...**Show All Questions**